
Agner Fog, Technical University of Denmark

Optimizing software performance using
vector instructions
Invited talk at Speed-B conference, October 19–21, 2016, Utrecht, The Netherlands.

Abstract

Microprocessor factories have a problem obeying Moore's law because of physical

limitations. The answer is increasing parallelism in the form of multiple CPU cores and

vector instructions (Single Instruction Multiple Data - SIMD). This is a challenge to

software developers who have to adapt to a moving target of new instruction set

additions and increasing vector sizes. Most of the software industry is lagging several

years behind the available hardware because of these problems. Other challenges are

tasks that cannot easily be executed with vector instructions, such as sequential

algorithms and lookup tables. The talk will discuss methods for overcoming these

problems and utilize the continuously growing power of microprocessors on the

market. A few problems relevant to cryptographic software will be covered, and the

outlook for the future will be discussed.

Find more on these topics at author website:

www.agner.org/optimize

http://www.agner.org/optimize

Moore's law

The clock frequency has stopped growing due to physical limitations. Instead, the number of CPU cores and the

size of vector registers is growing.

Hierarchy of bottlenecks

 Program installation

 Program load, JIT compile, DLL's

 System database

 Network access

 File input/output

 Graphical user interface

 RAM access, cache utilization

 Algorithm

 Dependency chains

 CPU pipeline and execution units

Sp
eed

 →

Remove the most limiting bottlenecks first. Find the hot spots.

Platforms

 x86

 ARM

 GPU

 Many-core processors

Programming language

 Wizards, point-and-click tools

 Java, C#, Visual Basic

 C/C++

 C/C++ using intrinsic functions

 Assembly language

fast d
evelo

p
m

en
t —

 fast execu
tio

n

←
 →

C++ compilers:

Gnu, Clang, Intel, PathScale, Microsoft

Memory allocation

 Data used together should be stored together

 Allocate few large blocks rather than many small

 Recycle allocated memory

 Avoid linked lists and STL containers

 Use local variables inside functions

Three parallelization methods

1. multiple cores

2. instruction level parallelism

 R2 = R2 / R1

 R4 = R3 * R1 (R3 delayed)

 R1 = R1 + R4

The lines can execute simultaneously or in any order if R1 is renamed

3. vector instructions

Fine-grained versus coarse-grained parallelism

CPU dispatching

FTC: "Intel sought to undercut the performance advantage of non-Intel x86 CPUs relative to Intel x86

CPUs when it redesigned and distributed software products, such as compilers and libraries".

Link to discussion.

http://agner.org/optimize/blog/read.php?i=107

Common pitfalls for CPU dispatching:

 Coding for known present processors rather than future

processors

 Failure to handle unknown processors properly

 Thinking in terms of specific processor models rather

than processor features

 Making too many branches

 Underestimating the time lag between software

development and use

 Underestimating the costs of developing, testing and

maintaining multiple code versions

 Ignoring virtualization

Efficient dispatch method: Make a function pointer that is

set to the appropriate version after first call.

Optimizations done by the compiler

 Function inlining

 Constant folding and constant propagation

 Register variables, live range analysis

 Common subexpression elimination

 Loop unrolling

 Loop invariant code motion

 Induction variables

 Instruction scheduling

 Algebraic reductions

Obstacles to optimization by compiler

 Cannot optimize across modules

 Pointer aliasing

 Pure functions

 Algebraic reduction of floating point

Optimizations done by the CPU

 Out of order execution

 Register renaming

 Branch prediction

 Data prefetching

Obstacles to optimization by the CPU

 Long dependency chains

 Loop-carried dependency chains

 Poorly predictable branches

 Memory allocation in small noncontiguous blocks

Vector coding methods

 Assembler

 Inline assembly

 Intrinsic functions

 Vector classes

 Automatic vectorization by
compiler

 Use third party function
library

Vector classes
Vec16f a, b, c; // Declare vector objects

a = b + c; // 16 parallel additions

www. agner.org/optimize/#vectorclass

Obstacles to vectorization

 sequential code

 pointer aliasing

 array size not divisible by vector size

 lookup tables

http://www.agner.org/optimize#vectorclass

Use permute instructions for table lookup

A permute instruction can be used for parallel table lookup by putting the

lookup table in the input vector. Some instructions have two input vectors,

which doubles the size of the table.

Largest table size with 8-bit granularity is 16 elements (SSSE3, 32 with AMD XOP).

Largest table size with 16-bit granularity is 64 elements (AVX512BW)

Largest table size with 32-bit granularity is 32 elements (AVX512F)

Application-specific instructions in latest x86 processors

 AES instructions. 128 bit vectors

 CRC32. 32 bits

 SHA. Hashing 128 bit vectors

 RDRAND, RDSEED. Physical random generator, 64 bits

Possible future trends

 More CPU cores

 Longer vector registers (1024, 2048 bits)

 More application-specific instructions

 Programmable logic (FPGA)

Proposal for instruction set that does not need CPU dispatching

Simple loop:

Vector loop:

Loop with variable vector length

http://www.forwardcom.info.

http://www.forwardcom.info/

