

• IETF – standards org

• Browsers – dominant platform

• Open source -- developers

Salz, SPEED Oct 2016 2

• Who are you?
– New algorithm

– New security properties*

– New implementation

– Want to get it used

• Did I miss anything?

*Constant time…

Salz, SPEED Oct 2016 3

• Main areas

– TLS

– Research; post-quantum

– Vehicle to vehicle

– IoT

• Other stuff – DNS privacy, BGP routing?

Salz, SPEED Oct 2016 4

• Divided into areas, each with 1-2 Area
Directors:

– Security, Applications, DNS, Routing

• Working groups … do the work

– Write, review, discuss documents; grow to be
RFC’s

• AD’s appoint WG chairs, WG chairs appoint
doc editors

Salz, SPEED Oct 2016 5

• Someone(s) writes a draft

• WG adopts it; it now “belongs” to the IETF

• WG works on it (email and 3x/year F2F)

• WG does “last call”

• IESG/IETF does “last call”

– Any AD can raise a DISCUSS item, back to drawing
board

• Voilà it’s a standard

Salz, SPEED Oct 2016 6

• IETF focus is on getting something that works
deployed

• IRTF is focused on research to feed into #1

• Major areas include
– CFRG – crypto forum

– T2TRG – thing to thing

• They give out a prize (USD$500, trip to IETF, etc)

Salz, SPEED Oct 2016 7

• Becoming the “think tank” of TLS and other
security WG’s

• Co-chairs Kenny Paterson and Alexey Melnikov

• Just started a “reading group” to review
papers that people (IETF community) think are
of interest

Salz, SPEED Oct 2016 8

• National-scale attackers exist and are bad

• National standards are not good a priori

• ISO standards are not good a priori

• Proofs are important

• “Hard” should be strictly defined

• Post-quantum becoming important

– Proceeding cautiously

Salz, SPEED Oct 2016 9

• The usual suspects

– Chrome

– Firefox

– Microsoft (IE, Edge)

– Apple

• They cooperate; e.g., SHA-1 deprecation

Salz, SPEED Oct 2016 10

• “Don’t quote me”

Salz, SPEED Oct 2016 11

• Smash it into a
kernel

• OpenSSH

• Throw it up on
GitHub*

• OpenSSL**

Salz, SPEED Oct 2016 12

• Simple

– All the infrastructure is
there

• Someone may use it

• If it’s tuning, “fork” the
base application

Salz, SPEED Oct 2016 13

• The major open source
crypto toolkit

• Was crap, is better

• All development on
GitHub now

• Make pull requests

• Soon to be Apache
license

Salz, SPEED Oct 2016 14

• Portable:
– Written in C

– Runs everywhere

– Assembler versions of some parts (24+ platforms)

• Common (opaque) structures for
– ASN.1 types

– Asymmetric keys

– Enveloping operations (encrypt, hmac, decrypt;
AEAD missing)

Salz, SPEED Oct 2016 15

• C compilers are too smart/clever/evil

• Zero out memory

• Constant-time (AES)

• New hardware instructions not always
suported

– Run-time detection possible/desired

Salz, SPEED Oct 2016 16

• x86, x86_64 (ASM, MASM, etc.)

• ARM (v6, v7, v8, etc.)

• PPC-32, -64

• MIPS-32, -64

• System/390

• PA-RISC

• SPARC

Salz, SPEED Oct 2016 17

$code.=<<___;

.text

.extern OPENSSL_ia32cap_P

.globl aesni_cbc_sha1_enc

.type aesni_cbc_sha1_enc,\@abi-omnipotent

.align 32

aesni_cbc_sha1_enc:

 # caller should check for SSSE3 and AES-NI bits

 mov OPENSSL_ia32cap_P+0(%rip),%r10d

 mov OPENSSL_ia32cap_P+4(%rip),%r11

$code.=<<___ if ($shaext);

 bt \$61,%r11 # check SHA bit

 jc aesni_cbc_sha1_enc_shaext

$code.=<<___ if ($avx);

 and \$`1<<28`,%r11d # mask AVX bit

 and \$`1<<30`,%r10d # mask "Intel CPU" bit

 or %r11d,%r10d

 cmp \$`1<<28|1<<30`,%r10d

 je aesni_cbc_sha1_enc_avx

Salz, SPEED Oct 2016 18

sub AUTOLOAD() # thunk [simplified] 32-bit style perlasm

{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://;

 my $arg = pop;

 $arg = "\$$arg" if ($arg*1 eq $arg);

 $code .= "\t$opcode\t".join(',',$arg,reverse @_)."\n";

}

@x=("%eax","%ebx","%ecx","%edx",map("%r${_}d",(8..11)),

 "%nox","%nox","%nox","%nox",map("%r${_}d",(12..15)));

@t=("%esi","%edi");

sub ROUND { # critical path is 24 cycles per round

my ($a0,$b0,$c0,$d0)=@_;

my ($a1,$b1,$c1,$d1)=map(($_&~3)+(($_+1)&3),($a0,$b0,$c0,$d0));

my ($a2,$b2,$c2,$d2)=map(($_&~3)+(($_+1)&3),($a1,$b1,$c1,$d1));

my ($a3,$b3,$c3,$d3)=map(($_&~3)+(($_+1)&3),($a2,$b2,$c2,$d2));

my ($xc,$xc_)=map("\"$_\"",@t);

my @x=map("\"$_\"",@x);

Salz, SPEED Oct 2016 19

 # Normally instructions would be interleaved to favour in-order

 # execution. Generally out-of-order cores manage it gracefully,

 # but not this time for some reason. As in-order execution

 # cores are dying breed, old Atom is the only one around,

 # instructions are left uninterleaved. Besides, Atom is better

 # off executing 1xSSSE3 code anyway...

 (

 "&add (@x[$a0],@x[$b0])", # Q1

 "&xor (@x[$d0],@x[$a0])",

 "&rol (@x[$d0],16)",

 "&add (@x[$a1],@x[$b1])", # Q2

 "&xor (@x[$d1],@x[$a1])",

 "&rol (@x[$d1],16)",

Salz, SPEED Oct 2016 20

Salz, SPEED Oct 2016 21

