

Towards Side-Channel Protected X25519 on 32-bit ARM Cortex-M4 Embedded Processors

Fabrizio De Santis¹ Georg Sigl^{1,2}

¹Technische Universität München Faculty of Electrical and Computer Engineering Institute for Security in Information Technology

²Fraunhofer Institute for Applied and Integrated Security (AISEC), Germany.

SPEED-B, October 19–21, 2016 Utrecht, The Netherlands

Introduction There are many ECCs out there ...

Introduction There are many ECCs out there ...

< ∃ > < ∃ > < ∃ >

Introduction

There are many ECCs out there ...

• US NIST 186-4 P-256, P-384, P-521, ...

Introduction

- US NIST 186-4 P-256, P-384, P-521, ...
- US ANSI X9.62 prime256v1, ...

- US NIST 186-4 P-256, P-384, P-521, ...
- US ANSI X9.62 prime256v1, ...
- SECG 2 secp256r1, secp384r1, secp521r1, ...

- US NIST 186-4 P-256, P-384, P-521, ...
- US ANSI X9.62 prime256v1, ...
- SECG 2 secp256r1, secp384r1, secp521r1, ...
- DE Brainpool brainpoolP256r1, brainpoolP384r1, brainpoolP512r1, ...

- US NIST 186-4 P-256, P-384, P-521, ...
- US ANSI X9.62 prime256v1, ...
- SECG 2 secp256r1, secp384r1, secp521r1, ...
- DE Brainpool brainpoolP256r1, brainpoolP384r1, brainpoolP512r1, ...
- Microsoft numsp256t1, numsp384t1, numsp512t1, ...

There are many ECCs out there ...

- US NIST 186-4 P-256, P-384, P-521, ...
- US ANSI X9.62 prime256v1, ...
- SECG 2 secp256r1, secp384r1, secp521r1, ...
- DE Brainpool brainpoolP256r1, brainpoolP384r1, brainpoolP512r1, ...
- Microsoft numsp256t1, numsp384t1, numsp512t1, ...

- US NIST 186-4 P-256, P-384, P-521, ...
- US ANSI X9.62 prime256v1, ...
- SECG 2 secp256r1, secp384r1, secp521r1, ...
- DE Brainpool brainpoolP256r1, brainpoolP384r1, brainpoolP512r1, ...
- Microsoft numsp256t1, numsp384t1, numsp512t1, ...
- ...
- Aranha et al. M-221, M-383, M-511, ...

There are many ECCs out there ...

- US NIST 186-4 P-256, P-384, P-521, ...
- US ANSI X9.62 prime256v1, ...
- SECG 2 secp256r1, secp384r1, secp521r1, ...
- DE Brainpool brainpoolP256r1, brainpoolP384r1, brainpoolP512r1, ...
- Microsoft numsp256t1, numsp384t1, numsp512t1, ...

- Aranha et al. M-221, M-383, M-511, ...
- Bernstein et al. Curve25519, Curve41417, ...

There are many ECCs out there ...

- US NIST 186-4 P-256, P-384, P-521, ...
- US ANSI X9.62 prime256v1, ...
- SECG 2 secp256r1, secp384r1, secp521r1, ...
- DE Brainpool brainpoolP256r1, brainpoolP384r1, brainpoolP512r1, ...
- Microsoft numsp256t1, numsp384t1, numsp512t1, ...

- Aranha et al. M-221, M-383, M-511, ...
- Bernstein et al. Curve25519, Curve41417, ...
- Hamburg Goldilocks448

There are many ECCs out there ...

- US NIST 186-4 P-256, P-384, P-521, ...
- US ANSI X9.62 prime256v1, ...
- SECG 2 secp256r1, secp384r1, secp521r1, ...
- DE Brainpool brainpoolP256r1, brainpoolP384r1, brainpoolP512r1, ...
- Microsoft numsp256t1, numsp384t1, numsp512t1, ...

- Aranha et al. M-221, M-383, M-511, ...
- Bernstein et al. Curve25519, Curve41417, ...
- Hamburg Goldilocks448
- Costello and Longa FourQ

There are many ECCs out there ...

- US NIST 186-4 P-256, P-384, P-521, ...
- US ANSI X9.62 prime256v1, ...
- SECG 2 secp256r1, secp384r1, secp521r1, ...
- DE Brainpool brainpoolP256r1, brainpoolP384r1, brainpoolP512r1, ...
- Microsoft numsp256t1, numsp384t1, numsp512t1, ...

- Aranha et al. M-221, M-383, M-511, ...
- Bernstein et al. Curve25519, Curve41417, ...
- Hamburg Goldilocks448
- Costello and Longa FourQ
- ...
- Cf. https://safecurves.cr.yp.to/

Introduction

Most-wanted features:

< ∃ > < ∃ > < ∃ >

Introduction

Most-wanted features:

• Security

Most-wanted features:

- Security
- Efficiency on the widest number of platforms (8-bit, 16-bit, 32-bit, 64-bit)

ТШП

Introduction

Most-wanted features:

- Security
- Efficiency on the widest number of platforms (8-bit, 16-bit, 32-bit, 64-bit)
- \Rightarrow Transparent and careful selection of domain parameters, e.g. "rigid generation".

ТЛ

Introduction

Most-wanted features:

- Security
- Efficiency on the widest number of platforms (8-bit, 16-bit, 32-bit, 64-bit)
- \Rightarrow Transparent and careful selection of domain parameters, e.g. "rigid generation".

Focus of this talk:

• High-speed and Compact X25519 for ARM Cortex-M4 processors

Most-wanted features:

- Security
- Efficiency on the widest number of platforms (8-bit, 16-bit, 32-bit, 64-bit)
- \Rightarrow Transparent and careful selection of domain parameters, e.g. "rigid generation".

Focus of this talk:

• High-speed and Compact X25519 for ARM Cortex-M4 processors

Preliminary results:

Adding more Side-Channel Protections to X25519

Most-wanted features:

- Security
- Efficiency on the widest number of platforms (8-bit, 16-bit, 32-bit, 64-bit)
- \Rightarrow Transparent and careful selection of domain parameters, e.g. "rigid generation".

Focus of this talk:

• High-speed and Compact X25519 for ARM Cortex-M4 processors

Preliminary results:

- Adding more Side-Channel Protections to X25519
- Towards Higher Security Levels with X448

ТЛП

Introduction

Most-wanted features:

- Security
- Efficiency on the widest number of platforms (8-bit, 16-bit, 32-bit, 64-bit)
- \Rightarrow Transparent and careful selection of domain parameters, e.g. "rigid generation".

Focus of this talk:

• High-speed and Compact X25519 for ARM Cortex-M4 processors

Preliminary results:

- Adding more Side-Channel Protections to X25519
- Towards Higher Security Levels with X448
- ARMing NaCl for Cortex-M4 processors: ChaCha20, Poly1305, ...

ТШ

Introduction

Most-wanted features:

- Security
- Efficiency on the widest number of platforms (8-bit, 16-bit, 32-bit, 64-bit)
- \Rightarrow Transparent and careful selection of domain parameters, e.g. "rigid generation".

Focus of this talk:

• High-speed and Compact X25519 for ARM Cortex-M4 processors

Preliminary results:

- Adding more Side-Channel Protections to X25519
- Towards Higher Security Levels with X448
- ARMing NaCl for Cortex-M4 processors: ChaCha20, Poly1305, ... but also ChaCha20-Poly1305 AEAD

Curve25519

Montgomery curves:

$$\mathcal{M}/\mathbb{F}_{p} := \{ (x, y) \in \mathbb{F}_{p}^{2} : By^{2} \equiv x^{3} + Ax^{2} + x \pmod{p} \}$$

Curve25519:

• $p = 2^{255} - 19, B = 1$

Curve25519

Montgomery curves:

$$\mathcal{M}/\mathbb{F}_{p} := \{(x,y) \in \mathbb{F}_{p}^{2} : By^{2} \equiv x^{3} + Ax^{2} + x \pmod{p}\}$$

Curve25519:

- $p = 2^{255} 19$, B = 1, A = 486662, (A + 2)/4 = 121666.
- Used in many applications, OS, libraries, and protocols like OpenSSH, OpenBSD, Signal, NaCl, BoringSSL*, Tor*, ...
 Cf. https://ianix.com/pub/curve25519-deployment.html
- Included in RFC 7748, ...

Curve25519

Montgomery curves:

$$\mathcal{M}/\mathbb{F}_{p} := \{(x,y) \in \mathbb{F}_{p}^{2} : By^{2} \equiv x^{3} + Ax^{2} + x \pmod{p}\}$$

Curve25519:

- $p = 2^{255} 19$, B = 1, A = 486662, (A + 2)/4 = 121666.
- Used in many applications, OS, libraries, and protocols like OpenSSH, OpenBSD, Signal, NaCl, BoringSSL*, Tor*, ... cf. https://ianix.com/pub/curve25519-deployment.html
- Included in RFC 7748, ...

*Hybrid Post-Quantum Handshake X25519+NewHope:

- Boring SSL under the name CECPQ1 (Google Chrome Canary)
- Tor proposal under the name RebelAlliance

X25519

$$\alpha = (k_a, \mathbf{P}) \qquad \beta = (k_b, \mathbf{P})$$

X25519

$$\alpha = (k_a, \mathbf{P}) \qquad \qquad \beta = (k_b, \mathbf{P})$$

$$A = [k_a] \cdot \mathbf{P}$$

X25519

$$\alpha = (k_a, \mathbf{P}) \qquad \qquad \beta = (k_b, \mathbf{P})$$
$$\mathbf{A} = [k_a] \cdot \mathbf{P} \qquad \qquad \overleftarrow{\mathbf{A}}_{\overset{\mathbf{B}}{\leftarrow}} \qquad \mathbf{B} = [k_b] \cdot \mathbf{P}$$

X25519

$$\alpha = (k_a, \mathbf{P}) \qquad \qquad \beta = (k_b, \mathbf{P})$$
$$\mathbf{A} = [k_a] \cdot \mathbf{P} \qquad \qquad \overleftarrow{\mathbf{A}}_{\overset{\mathbf{B}}{\leftarrow}} \qquad \mathbf{B} = [k_b] \cdot \mathbf{P}$$

< ₽ > < E > < E > **1**

X25519

$$\alpha = (k_a, \mathbf{P}) \qquad \qquad \beta = (k_b, \mathbf{P})$$

$$\mathbf{A} = [k_a] \cdot \mathbf{P} \qquad \qquad \overleftarrow{\mathbf{A}} \\ \mathbf{K} = [k_a] \cdot \mathbf{B} = [k_b] \cdot [k_b] \cdot \mathbf{P} \qquad \qquad \mathbf{K} = [k_b] \cdot \mathbf{A} = [k_b] \cdot [k_a] \cdot \mathbf{P}$$

X25519

X25519 allows to compute a shared secret **K** between two parties (α, β) using Curve25519:

$$\alpha = (k_a, \mathbf{P}) \qquad \qquad \beta = (k_b, \mathbf{P})$$

$$\mathbf{A} = [k_a] \cdot \mathbf{P} \qquad \qquad \overleftarrow{\mathbf{A}} \\ \mathbf{K} = [k_a] \cdot \mathbf{B} = [k_b] \cdot [k_b] \cdot \mathbf{P} \qquad \qquad \mathbf{K} = [k_b] \cdot \mathbf{A} = [k_b] \cdot [k_a] \cdot \mathbf{P}$$

Security rests upon ECDLP: X25519 \approx 128-bit security.

X25519

X25519 allows to compute a shared secret **K** between two parties (α, β) using Curve25519:

$$\alpha = (k_a, \mathbf{P}) \qquad \qquad \beta = (k_b, \mathbf{P})$$

$$\mathbf{A} = [k_a] \cdot \mathbf{P} \qquad \qquad \stackrel{\mathbf{A}}{\leftarrow} \qquad \mathbf{B} = [k_b] \cdot \mathbf{P} \qquad \qquad \qquad \mathbf{K} = [k_b] \cdot \mathbf{A} = [k_b] \cdot [k_a] \cdot \mathbf{P}$$

Security rests upon ECDLP: X25519 \approx 128-bit security.

Scalar multiplication: $\mathbf{Q} = [k] \cdot \mathbf{P} = \mathbf{P} + \mathbf{P} + \cdots + \mathbf{P}$ in the group $(\mathcal{M}/\mathbb{F}_p \cup \mathcal{O}, +)$.

Montgomery Ladder Algorithm

(Point Addition) (Point Doubling)

(Point Addition) (Point Doubling)

Montgomery Ladder Algorithm

• x-coordinate only Montgomery Ladder

(Point Addition) (Point Doubling)

(Point Addition) (Point Doubling)

Montgomery Ladder Algorithm

- x-coordinate only Montgomery Ladder
- Homogeneous Projective Coordinates: $x \mapsto (X, Z)$ such that x = X/Z.

(Point Addition) (Point Doubling)

(Point Addition) (Point Doubling)

Montgomery Ladder Algorithm

(Point Addition) (Point Doubling)

(Point Addition) (Point Doubling)

x-coordinate only Montgomery Ladder

- Homogeneous Projective Coordinates: $x \mapsto (X, Z)$ such that x = X/Z.
- Point addition in 3M + 2S + 6A, point doubling in $2M + 2S + 2A + 1M_{121666}$.

Montgomery Ladder Algorithm

(Point Addition) (Point Doubling)

(Point Addition) (Point Doubling)

- x-coordinate only Montgomery Ladder
- Homogeneous Projective Coordinates: $x \mapsto (X, Z)$ such that x = X/Z.
- Point addition in 3M + 2S + 6A, point doubling in $2M + 2S + 2A + 1M_{121666}$.
- X25519 in 1287M + 1274S + 2040A + 255 M_{121666} when inversion in $\mathbb{F}_{\textit{p}}$ takes 254S + 11M.

Fabrizio De Santis (TUM)

ARM Cortex M4 Processors

- ARMv7E-M architecture
- 32-bit Thumb[®]-2 instruction set
- 3-stage pipeline
- 13 + 1 General-purpose registers
- Optional FPU Unit
- DSP Unit (32 \times 32-bit Multiplier :-)
- 32-bit STM32F411RE MCU
- 100 MHz ARM Cortex-M4F
- 512-kB Flash
- 128-kB SRAM
- $I_0 = 100 \mu \text{A/MHz}$

Figure : STMicroelectronics NUCLEO-F411RE

ARM Cortex M4 Instructions

Usual arithmetic instructions:

• ADD r_2, r_0, r_1 : $r_2 = r_0 + r_1$

- ADD r_2, r_0, r_1 : $r_2 = r_0 + r_1$
- ADDS r_2, r_0, r_1 : $r_2 + c_{out} 2^{32} = r_0 + r_1$

◆ 伊 ト ◆ 臣 ト ◆ 臣 ト

ARM Cortex M4 Instructions

- ADD r_2, r_0, r_1 : $r_2 = r_0 + r_1$
- ADDS r_2, r_0, r_1 : $r_2 + c_{out} 2^{32} = r_0 + r_1$
- ADC r_2, r_0, r_1 : $r_2 = r_0 + r_1 + c_{in}$

<<p>4 ∰ ▶ < ∃ ▶ < ∃ ▶</p>

ARM Cortex M4 Instructions

- ADD r_2, r_0, r_1 : $r_2 = r_0 + r_1$
- ADDS r_2, r_0, r_1 : $r_2 + c_{out} 2^{32} = r_0 + r_1$
- ADC r_2, r_0, r_1 : $r_2 = r_0 + r_1 + c_{in}$
- ADCS r_2, r_0, r_1 : $r_2 + c_{out} 2^{32} = r_0 + r_1 + c_{in}$

<<p>4 ∰ ▶ < ∃ ▶ < ∃ ▶</p>

ARM Cortex M4 Instructions

- ADD r_2, r_0, r_1 : $r_2 = r_0 + r_1$
- ADDS r_2, r_0, r_1 : $r_2 + c_{out} 2^{32} = r_0 + r_1$
- ADC r_2, r_0, r_1 : $r_2 = r_0 + r_1 + c_{in}$
- ADCS r_2, r_0, r_1 : $r_2 + c_{out} 2^{32} = r_0 + r_1 + c_{in}$
- MUL r_2, r_0, r_1 : $r_2 = r_0 \cdot r_1$

<<p>4 ∰ ▶ < ∃ ▶ < ∃ ▶</p>

ARM Cortex M4 Instructions

Usual arithmetic instructions:

- ADD r_2, r_0, r_1 : $r_2 = r_0 + r_1$
- ADDS r_2, r_0, r_1 : $r_2 + c_{out} 2^{32} = r_0 + r_1$
- ADC r_2, r_0, r_1 : $r_2 = r_0 + r_1 + c_{in}$
- ADCS r_2, r_0, r_1 : $r_2 + c_{out} 2^{32} = r_0 + r_1 + c_{in}$
- MUL r_2, r_0, r_1 : $r_2 = r_0 \cdot r_1$

• ...

Fabrizio De Santis (TUM)

Powerful DSP instructions:

• UMULL r_2, r_3, r_0, r_1 : $r_2 + r_3 2^{32} = r_0 r_1$

Powerful DSP instructions:

- UMULL r_2, r_3, r_0, r_1 : $r_2 + r_3 2^{32} = r_0 r_1$
- UMLAL r_2, r_3, r_0, r_1 : $r_2 + r_3 2^{32} = r_0 r_1 + (r_2 + r_3 2^{32})$

Powerful DSP instructions:

- UMULL r_2, r_3, r_0, r_1 : $r_2 + r_3 2^{32} = r_0 r_1$
- UMLAL r_2, r_3, r_0, r_1 : $r_2 + r_3 2^{32} = r_0 r_1 + (r_2 + r_3 2^{32})$
- UMAAL r_2, r_3, r_0, r_1 : $r_2 + r_3 2^{32} = r_0 r_1 + (r_2 + r_3)$

Powerful DSP instructions:

- UMULL r_2, r_3, r_0, r_1 : $r_2 + r_3 2^{32} = r_0 r_1$
- UMLAL r_2, r_3, r_0, r_1 : $r_2 + r_3 2^{32} = r_0 r_1 + (r_2 + r_3 2^{32})$
- UMAAL r_2, r_3, r_0, r_1 : $r_2 + r_3 2^{32} = r_0 r_1 + (r_2 + r_3)$

No carry flags.

Representation of Integer Numbers and Modular Reduction

• 255-bit integers are represented in radix-2³² using 8-limbs:

$$(a_0,\ldots,a_7) \Longleftrightarrow a = \sum_{i=0}^7 a_i 2^{32i}, a_i \in \mathbb{Z}_{2^{32i}}$$

Representation of Integer Numbers and Modular Reduction

• 255-bit integers are represented in radix-2³² using 8-limbs:

$$(a_0,\ldots,a_7) \Longleftrightarrow a = \sum_{i=0}^7 a_i 2^{32i}, a_i \in \mathbb{Z}_{2^{32i}}$$

- Fast reduction modulo $2p = 2^{256} 38$
 - Fit values into 256-bit
 - Aligned to the registers boundaries

Representation of Integer Numbers and Modular Reduction

• 255-bit integers are represented in radix-2³² using 8-limbs:

$$(a_0,\ldots,a_7) \Longleftrightarrow a = \sum_{i=0}^7 a_i 2^{32i}, a_i \in \mathbb{Z}_{2^{32i}}$$

- Fast reduction modulo $2p = 2^{256} 38$
 - Fit values into 256-bit
 - Aligned to the registers boundaries
- Full reduction modulo $p = 2^{255} 19$ at the very end
 - Fit back values to the original field \mathbb{F}_p

Modular Addition/Substraction

1. Straightforward addition with carry (8 AD?S instructions):

```
Input: a = (a_0, ..., a_7), b = (b_0, ..., b_7).

Output: c = a + b = (c_0, ..., c_7, \gamma_8)

\gamma_0 \leftarrow 0

for i \leftarrow 0 to 7 do

(c_i, \gamma_{i+1}) \leftarrow a_i + b_i + \gamma_i

end for
```


Modular Addition/Substraction

1. Straightforward addition with carry (8 AD?S instructions):

```
Input: a = (a_0, ..., a_7), b = (b_0, ..., b_7).

Output: c = a + b = (c_0, ..., c_7, \gamma_8)

\gamma_0 \leftarrow 0

for i \leftarrow 0 to 7 do

(c_i, \gamma_{i+1}) \leftarrow a_i + b_i + \gamma_i

end for
```

2. Fast reduction by 2p (2 MUL + 9 AD?S instructions):

Modular Addition/Substraction

1. Straightforward addition with carry (8 AD?S instructions):

```
Input: a = (a_0, ..., a_7), b = (b_0, ..., b_7).

Output: c = a + b = (c_0, ..., c_7, \gamma_8)

\gamma_0 \leftarrow 0

for i \leftarrow 0 to 7 do

(c_i, \gamma_{i+1}) \leftarrow a_i + b_i + \gamma_i

end for
```

2. Fast reduction by 2p (2 MUL + 9 AD?S instructions):

Total: 106 cycles in 138 bytes.

Fabrizio De Santis (TUM)

$\textbf{256} \times \textbf{256-bit Multiplication/Squaring}$

Subtractive Karatsuba:

$$\begin{array}{rcl} ab & = & (a_0 + a_1 2^{n/2})(b_0 + b_1 2^{n/2}) \\ & = & a_0 b_0 + [(-1)^{(1-t)} |a_0 - a_1| |b_0 - b_1| + a_1 b_1 + a_0 b_0] 2^{n/2} + a_1 b_1 2^n \\ \end{array}$$

Subtractive Karatsuba:

$$\begin{array}{rcl} ab & = & (a_0 + a_1 2^{n/2})(b_0 + b_1 2^{n/2}) \\ & = & a_0 b_0 + [(-1)^{(1-t)} |a_0 - a_1| |b_0 - b_1| + a_1 b_1 + a_0 b_0] 2^{n/2} + a_1 b_1 2^n \\ \end{array}$$

Costs:

- 3 multiplications
- 2 additions + 2 subtractions + some shifting
- 2 absolute differences and 1 conditional negation

Subtractive Karatsuba:

$$\begin{array}{rcl} ab & = & (a_0 + a_1 2^{n/2})(b_0 + b_1 2^{n/2}) \\ & = & a_0 b_0 + [(-1)^{(1-t)} |a_0 - a_1| |b_0 - b_1| + a_1 b_1 + a_0 b_0] 2^{n/2} + a_1 b_1 2^n \\ \end{array}$$

Costs:

- 3 multiplications
- 2 additions + 2 subtractions + some shifting
- 2 absolute differences and 1 conditional negation

First option:

• 3-level subtractive Karatsuba \Longrightarrow 27× (32 × 32)-bit multiplications

Subtractive Karatsuba:

$$\begin{array}{rcl} ab & = & (a_0 + a_1 2^{n/2})(b_0 + b_1 2^{n/2}) \\ & = & a_0 b_0 + [(-1)^{(1-t)} |a_0 - a_1| |b_0 - b_1| + a_1 b_1 + a_0 b_0] 2^{n/2} + a_1 b_1 2^n \\ \end{array}$$

Costs:

- 3 multiplications
- 2 additions + 2 subtractions + some shifting
- 2 absolute differences and 1 conditional negation

First option:

- + 3-level subtractive Karatsuba \Longrightarrow 27× (32 \times 32)-bit multiplications Second option:
 - 2-level subtractive Karatsuba \implies 9× (64 × 64)-bit multiplications

Subtractive Karatsuba:

$$\begin{array}{rcl} ab & = & (a_0 + a_1 2^{n/2})(b_0 + b_1 2^{n/2}) \\ & = & a_0 b_0 + [(-1)^{(1-t)} |a_0 - a_1| |b_0 - b_1| + a_1 b_1 + a_0 b_0] 2^{n/2} + a_1 b_1 2^n \\ \end{array}$$

Costs:

- 3 multiplications
- 2 additions + 2 subtractions + some shifting
- 2 absolute differences and 1 conditional negation

First option:

- 3-level subtractive Karatsuba \Longrightarrow 27 \times (32 \times 32)-bit multiplications Second option:
 - 2-level subtractive Karatsuba \implies 9× (64 × 64)-bit multiplications \checkmark

Total: 546 cycles and 1,264 bytes.

64×64 -bit Multiplication/Squaring

$$(a_0 + a_1 2^{32})(b_0 + b_1 2^{32}) = a_0 b_0 + (a_0 b_1 + a_1 b_0) 2^{32} + a_1 b_1 2^{64}$$

64×64 -bit Multiplication/Squaring

$$(a_0 + a_1 2^{32})(b_0 + b_1 2^{32}) = a_0 b_0 + (a_0 b_1 + a_1 b_0) 2^{32} + a_1 b_1 2^{64}$$

Partial Products (4 \times UMULL):

 $\begin{array}{l} (d_0, d_1) = a_0 b_0 \\ (d_2, d_3) = a_0 b_1 \\ (d_4, d_5) = a_1 b_0 \\ (d_6, d_7) = a_1 b_1 \end{array}$

ТЛП

64×64 -bit Multiplication/Squaring

$$\begin{array}{l}(a_0+a_12^{32})(b_0+b_12^{32})=a_0b_0+(a_0b_1+a_1b_0)2^{32}+a_1b_12^{64}\\=d_0+(d_1+d_2+d_4)2^{32}+(d_3+d_5+d_6)2^{64}+d_72^{96}\end{array}$$

Partial Products (4 \times UMULL):

(d_0, d_1)	=	$a_0 b_0$
(d_2, d_3)	=	a_0b_1
(d_4, d_5)	=	a_1b_0
(d_6, d_7)	=	a_1b_1

64×64 -bit Multiplication/Squaring

$$\begin{array}{l}(a_0+a_12^{32})(b_0+b_12^{32})=a_0b_0+(a_0b_1+a_1b_0)2^{32}+a_1b_12^{64}\\=d_0+(d_1+d_2+d_4)2^{32}+(d_3+d_5+d_6)2^{64}+d_72^{96}\end{array}$$

Partial Products (4 \times UMULL):

Adder Tree (2 \times ADDS + 2 \times ADCS + 2 \times ADC):

 $(d_0, d_1) = a_0 b_0$ $(d_2, d_3) = a_0 b_1$ $(d_4, d_5) = a_1 b_0$ $(d_6, d_7) = a_1 b_1$

64×64 -bit Multiplication/Squaring

$$(a_0 + a_1 2^{32})(b_0 + b_1 2^{32}) = a_0 b_0 + (a_0 b_1 + a_1 b_0) 2^{32} + a_1 b_1 2^{64} = d_0 + (d_1 + d_2 + d_4) 2^{32} + (d_3 + d_5 + d_6) 2^{64} + d_7 2^{96}$$

Partial Products (4 \times UMULL):

Adder Tree (2 \times ADDS + 2 \times ADCS + 2 \times ADC):

$$(d_0, d_1) = a_0 b_0$$

 $(d_2, d_3) = a_0 b_1$
 $(d_4, d_5) = a_1 b_0$
 $(d_6, d_7) = a_1 b_1$

Total: 10 instructions.

Multiplication by 121666

 $121666 \Longleftrightarrow \texttt{0x0001db42} \Longleftrightarrow \texttt{121666} a_i < \texttt{2}^{\texttt{49}}$

(日) (日) (日) (日)


```
Multiplication by 121666
121666 \iff 0x0001db42 \iff 121666a_i < 2^{49}
Input: a = (a_0, ..., a_7)
```

```
Output: c = 121666a.

c_0 \leftarrow 0

for i \leftarrow 0 to 7 do

(c_i, c_{i+1}) \leftarrow 121666a_i + c_i

end for
```



```
Multiplication by 121666
121666 \iff 0x0001db42 \iff 121666a_i < 2^{49}
```

```
UMAAL r_2, r_3, r_0, r_1:
r_2 + r_3 2^{32} = r_0 r_1 + (r_2 + r_3)
```

(日) (日) (日) (日)


```
Multiplication by 121666
121666 \iff 0x0001db42 \iff 121666a_i < 2^{49}
```

```
UMAAL r_2, r_3, r_0, r_1:

r_2 + r_3 2^{32} = r_0 r_1 + (r_2 + r_3)

First option:
```

```
121666a_i + c_i + 0
```

(日) (日) (日) (日)


```
Multiplication by 121666
121666 \iff 0x0001db42 \iff 121666a_i < 2^{49}
```

```
UMAAL r_2, r_3, r_0, r_1:
r_2 + r_3 2^{32} = r_0 r_1 + (r_2 + r_3)
```

First option: $121666a_i + c_i + 0$

Second option: $121665a_i + c_i + a_i$

<<p>(日)<</p>


```
Multiplication by 121666
121666 \iff 0x0001db42 \iff 121666a_i < 2^{49}
```

```
UMAAL r_2, r_3, r_0, r_1:
r_2 + r_3 2^{32} = r_0 r_1 + (r_2 + r_3)
```

```
First option: 121666a_i + c_i + 0
```

```
Second option: 121665a_i + c_i + a_i \checkmark
```

```
In total: 1UMULL + 7UMAAL + 1SUB = 9 instructions.
```

```
Fabrizio De Santis (TUM)
```

Implementation Results

 \mathbb{Z}_{2p} Arithmetic

Operation	Speed [Cycles]	Code [Bytes]	Stack [Bytes]
Addition	106	138	32
Subtraction	108	148	32

- GNU Compiler Collection for ARM Embedded Processors version 4.9.3 with -02 -mthumb -mcpu=cortex-m4
- Incl. reduction modulo 2p and function call overheads.
\mathbb{Z}_{2p} Arithmetic

Operation	Speed [Cycles]	Code [Bytes]	Stack [Bytes]
Addition	106	138	32
Subtraction	108	148	32
Multiplication	546	1,264	148
Squaring	362	882	104

- GNU Compiler Collection for ARM Embedded Processors version 4.9.3 with -02 -mthumb -mcpu=cortex-m4
- Incl. reduction modulo 2p and function call overheads.

 \mathbb{Z}_{2p} Arithmetic

Operation	Speed [Cycles]	Code [Bytes]	Stack [Bytes]
Addition	106	138	32
Subtraction	108	148	32
Multiplication	546	1,264	148
Squaring	362	882	104
Multiplication by 121666	72	116	24

- GNU Compiler Collection for ARM Embedded Processors version 4.9.3 with -02 -mthumb -mcpu=cortex-m4
- Incl. reduction modulo 2p and function call overheads.

 \mathbb{Z}_{2p} Arithmetic

Operation	Speed [Cycles]	Code [Bytes]	Stack [Bytes]
Addition	106	138	32
Subtraction	108	148	32
Multiplication	546	1,264	148
Squaring	362	882	104
Multiplication by 121666	72	116	24
Inversion (254S+11M)	96,337	484	480

- GNU Compiler Collection for ARM Embedded Processors version 4.9.3 with -02 -mthumb -mcpu=cortex-m4
- Incl. reduction modulo 2p and function call overheads.

Variable-base Single-scalar Multiplication

	Platform	256 × 256-bit Multiply [Cycles]	256 -bit Square [Cycles]	S/M Ratio	Curve [Cycles]	25519 [Bytes]
8-bit	AVR ATmega [1]	6,868	_	1	22,791,580	_
	AVR ATmega [2]	7,555	5,666	0.75	20, 153, 658	_
	AVR ATmega [3]	4,961	3, 324	0.67	13,900,397	17,710

[1] M. Hutter and P. Schwabe "NaCl on 8-Bit AVR Microcontrollers", AFRICACRYPT 2013.

[2] E. Nascimento et al. "Efficient and Secure Elliptic Curve Cryptography for 8-bit AVR Microcontrollers", SPACE 2015.

[3] M. Düll et al. "High-speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers", Designs, Codes and Cryptography 2015.

Variable-base Single-scalar Multiplication

	Platform	256 × 256-bit Multiply [Cycles]	256 -bit Square [Cycles]	S/M Ratio	Curve [Cycles]	25519 [Bytes]
8-bit	AVR ATmega [1] AVR ATmega [2] AVR ATmega [3]	6,868 7,555 4,961	5,666 3,324	1 0.75 0.67	22, 791, 580 20, 153, 658 13, 900, 397	 17, 710
16-bit	MSP430 [4] MSP430 [3] MSP430 [4] MSP430 [3]	3,606 3,193 2,488 2,079	2,426 	1 0.76 1 0.75	9, 139, 739 7, 933, 296 6, 513, 011 5, 301, 792	11, 778 13, 112 8, 956 10, 088

[1] M. Hutter and P. Schwabe "NaCl on 8-Bit AVR Microcontrollers", AFRICACRYPT 2013.

[2] E. Nascimento et al. "Efficient and Secure Elliptic Curve Cryptography for 8-bit AVR Microcontrollers", SPACE 2015.

[3] M. Düll et al. "High-speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers", Designs, Codes and Cryptography 2015.

[4] G. Hinterwälder et al. "Full-Size High-Security ECC Implementation on MSP430 Microcontrollers", LATINCRYPT 2014.

Variable-base Single-scalar Multiplication

	Platform	256 × 256-bit Multiply [Cycles]	256 -bit Square [Cycles]	S/M Ratio	Curve [Cycles]	25519 [Bytes]
8-bit	AVR ATmega [1] AVR ATmega [2] AVR ATmega [3]	6, 868 7, 555 4, 961	5,666 3,324	1 0.75 0.67	22, 791, 580 20, 153, 658 13, 900, 397	 17, 710
16-bit	MSP430 [4] MSP430 [3] MSP430 [4] MSP430 [3]	3,606 3,193 2,488 2,079	2,426 	1 0.76 1 0.75	9, 139, 739 7, 933, 296 6, 513, 011 5, 301, 792	11, 778 13, 112 8, 956 10, 088
32-bit	ARM Cortex-M0 [3] ARM Cortex-M4 [5] ARM Cortex-M4 [This Work] ARM Cortex-M4 [This Work]	1, 294 631 546 546	857 563 362	0.66 0.89 1 0.66	3, 589, 850 1, 816, 351 1,658,083 1,423,667	7,900 4,140 2,952 3,750

[1] M. Hutter and P. Schwabe "NaCl on 8-Bit AVR Microcontrollers", AFRICACRYPT 2013.

[2] E. Nascimento et al. "Efficient and Secure Elliptic Curve Cryptography for 8-bit AVR Microcontrollers", SPACE 2015.

[3] M. Düll et al. "High-speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers", Designs, Codes and Cryptography 2015.

[4] G. Hinterwälder et al. "Full-Size High-Security ECC Implementation on MSP430 Microcontrollers", LATINCRYPT 2014.

[5] W. de Groot "A Performance Study of X25519 on Cortex M3 and M4", Master Thesis 2015.

Area vs Speed

Power/Energy vs Runtime

Adding more Side-Channel Protections to X25519

Randomized Projective Coordinates

 $x \mapsto (\lambda X, \lambda Z)$ for $\lambda \leftarrow \mathbb{F}^*_{2^{255}-19}$

Adding more Side-Channel Protections to X25519

Randomized Projective Coordinates

 $x \mapsto (\lambda X, \lambda Z)$ for $\lambda \leftarrow^{\$} \mathbb{F}^{*}_{2^{255}-19}$

Costs:

- + 1543M instead of 1287M, i.e. 1,423,667 \rightarrow 1,563,582 cycles
- Incl. cycles for setting up and generating 64-bytes randomness with ChaCha20

Adding more Side-Channel Protections to X25519

Randomized Projective Coordinates

 $x \mapsto (\lambda X, \lambda Z)$ for $\lambda \leftarrow \mathbb{F}^*_{2^{255}-19}$

Costs:

- + 1543M instead of 1287M, i.e. 1,423,667 \rightarrow 1,563,582 cycles
- Incl. cycles for setting up and generating 64-bytes randomness with ChaCha20

Is this all? cf. https://eprint.iacr.org/2016/923.pdf

Curve448 (RFC7748):

• $p = 2^{448} - 2^{224} - 1$, B = 1, A = 156326.

Preliminary results:

Curve448 (RFC7748):

• $p = 2^{448} - 2^{224} - 1$, B = 1, A = 156326.

Preliminary results:

• 1-level additive Karatsuba

X448

Curve448 (RFC7748):

• $p = 2^{448} - 2^{224} - 1$, B = 1, A = 156326.

Preliminary results:

- 1-level additive Karatsuba
- Reduced-radix 2²⁸ with fast and lazy reduction

X448

Curve448 (RFC7748):

• $p = 2^{448} - 2^{224} - 1$, B = 1, A = 156326.

Preliminary results:

- 1-level additive Karatsuba
- Reduced-radix 2²⁸ with fast and lazy reduction
- 448 \times 448-bit Squarer/Multiplication incl. reduction modulo 2^{448} 2^{224} 1:

 $1,087/1,532 \text{ cycles} \Rightarrow 1$ **S**=0.71**M**.

X448

Curve448 (RFC7748):

• $p = 2^{448} - 2^{224} - 1$, B = 1, A = 156326.

Preliminary results:

- 1-level additive Karatsuba
- Reduced-radix 2²⁸ with fast and lazy reduction
- 448 \times 448-bit Squarer/Multiplication incl. reduction modulo $2^{448} 2^{224} 1$:

 $1,087/1,532 \text{ cycles} \Rightarrow 1$ **S**=0.71**M**.

• X448 @ 6,939,815 cycles \approx 69ms@100MHz

ChaCha20 and Poly1305

NaCI:

X25519 @ 1,423,667 cycles in 3,750 bytes ✓

ChaCha20 and Poly1305

NaCI:

- X25519 @ 1,423,667 cycles in 3,750 bytes ✓
- Poly1305 @ 3.6 cycles/byte in 648 bytes √

ChaCha20 and Poly1305

NaCI:

- X25519 @ 1,423,667 cycles in 3,750 bytes ✓
- Poly1305 @ 3.6 cycles/byte in 648 bytes \checkmark
- ChaCha20 @ 22 cycles/byte in 696 bytes \checkmark

ChaCha20 and Poly1305

NaCI:

- X25519 @ 1,423,667 cycles in 3,750 bytes ✓
- Poly1305 @ 3.6 cycles/byte in 648 bytes \checkmark
- ChaCha20 @ 22 cycles/byte in 696 bytes \checkmark
- Ed25519 @ ... in progress

ChaCha20 and Poly1305

NaCI:

- X25519 @ 1,423,667 cycles in 3,750 bytes ✓
- Poly1305 @ 3.6 cycles/byte in 648 bytes \checkmark
- ChaCha20 @ 22 cycles/byte in 696 bytes \checkmark
- Ed25519 @ ... in progress

IETF/TLS cipher suite as by RFC7905 and RFC7539:

• ChaCha20-Poly1305 AEAD @ 33.6 cycles/byte in 1,668 bytes \checkmark

Conclusion

High-speed and compact X25519 on ARM Cortex M4 processors

- High-speed full-radix field arithmetic
- Exploit powerful DSP multiplication instructions
- Promising results for high-speed IoT applications

Next steps:

- 1. Ultimate the porting of NaCl on ARM Cortex M4 processors
- 2. Validate Side-Channel Protections against actual measurements
- 3. Evaluate various efficiency-security trade-offs, e.g. X448/Ed448