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Abstract. Curve25519 is a prime field Montgomery curve for use with
the Elliptic Curve Diffie-Hellman (ECDH) key exchange protocol. In the
past few years, Curve25519 has received increasing attention, due to
its elegant design geared towards security, high-performance, and trans-
parency. In this work, we present an high-speed and side-channel pro-
tected Curve25519 variable-base scalar multiplication for ARM Cortex-
M4 processors, running in constant-time and using randomized projective
coordinates to hinder side-channel attacks.
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1 X25519

Curve25519 is a 255-bit Montgomery curve defined by the equation y2 = x3 +
486662x2 + x over the prime field F2255−19 [Ber06].

The set of points {(x, y) ∈ F2
2255−19 : y2 ≡ x3 + 486662x2 + x (mod 2255 −

19)} together with the point at infinity O (neutral element) form an additive
abelian group under the point addition operation. The repeated addition of a
point P to itself for k times is called scalar multiplication and it is shortly
denoted as Q = [k] ·P.

The ECDH-Curve25519 protocol (also known as X25519 [Ber]) allows to
compute a shared secret between two parties using two scalar multiplications:
(1) each party computes a scalar multiplication on Curve25519 between its 32-
byte private key k and a 32-byte public point P; (2) each party transmits the
32-byte output Q = [k] · P to the opposite party and computes yet a scalar
multiplication on Curve25519 between its private key k and the public output
received from the opposite party.

A Curve25519 scalar multiplication can be efficiently computed using the
(x-coordinate only) Montgomery ladder and homogeneous projective coordi-
nates [Mon87], i.e. point coordinates are represented by (X,Z) such that x =
X/Z with Z 6= 0.
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Algorithm 1 Curve25519 Scalar Multiplication with Randomized Homogeneous
Projective Coordinates.

Input: k = (k255, . . . , k0)2 ∈ 2254 + 8{0, . . . , 2251− 1} and xP s.t. P = (xP , yP )
Output: xQ s.t. Q = [k] ·P = (xQ, yQ)

1: λ←$ F∗2255−19;Xλ ← λxP ;X1 ← Xλ;Z1 ← λ {1M }
2: X2 ←$ F∗2255−19;Z2 ← 0

3: for i = 254 downto 0 do

4: (X1, X2)← cswap(X1, X2, (ki ⊕ ki+1))
5: (Z1, Z2)← cswap(Z1, Z2, (ki ⊕ ki+1))

6: T0 ← X1 − Z1 {1B }
7: T1 ← X2 − Z2 {1B }
8: X2 ← X2 + Z2 {1A }
9: Z2 ← X1 + Z1 {1A }

10: Z1 ← T0X2 {1M }
11: Z2 ← Z2T1 {1M }
12: T0 ← T 2

1 {1S }
13: T1 ← X2

2 {1S }
14: X1 ← Z1 + Z2 {1A }
15: Z2 ← Z1 − Z2 {1B }
16: X2 ← T1T0 {1M }
17: T1 ← T1 − T0 {1B }
18: Z2 ← Z2

2 {1S }
19: Z1 ← 121666T1 {1M121666 }
20: X1 ← X2

1 {1S }
21: X1 ← λX1 {1M }
22: T0 ← T0 + Z1 {1A }
23: Z1 ← XλZ2 {1M }
24: Z2 ← T1T0 {1M }
25: end for

26: (X1, X2)← cswap(X1, X2, k0)
27: (Z1, Z2)← cswap(Z1, Z2, k0)

28: Z2 ← Z−1
2 { 254S+11M }

29: xQ ← X2Z2 {1M }
30: return xQ

In order to protect X25519 implementations against timing attacks, prime
field arithmetic must be implemented in constant-time3. In order to offer ba-
sic protections against differential power attacks, the initial point coordinates
can be randomized using a fresh random value λ ←$ F∗

2255−19 for each execu-
tion [Cor99], i.e. (λX, λZ). The Montgomery Ladder for Curve25519 using ran-
domized homogeneous projective coordinates is provided in Algorithm 1. It re-
quires 1020A+1020B+1274S+1543M field operations to perform a Curve25519

3 The cswap(·, ·, ·) function must also be implemented in constant-time.
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scalar multiplication, where the letters A,B,S,M are used to denote field ad-
ditions, subtractions, squaring and multiplications, respectively.

2 ARM Cortex-M4 Processors

ARM Cortex-M4 processors are 32-bit RISC processors based on the ARMv7-M
architecture and targeting small scale applications, such as microcontrollers.

They are equipped with 13 general-purpose registers, plus the link register
(lr), the stack pointer (sp), and the program counter (pc). Note that the link
register (lr) can be used as a general-purpose register, after that its content has
been saved.

Load and store instructions take n + 1 clock cycles in general, where n is
the number of registers involved in the specific memory instruction, i.e. multiple
contiguous data can be read from/write to memory. Note that memory accesses
can be sped up by scheduling independent load/store instructions which can
take advantage of the (three-stages) pipeline.

The ARMv7-M architecture supports the full set of 32-bit Thumb R©-2 in-
structions, including very powerful single-cycle “multiply” and “multiply-and-
accumulate” instructions [ARMb]. In particular:

– UMULL rLO, rHI, ai, bj multiplies two unsigned integer words ai, bj and
stores the 64-bit result into the registers rLO and rHI.

– UMLAL rLO, rHI, ai, bj multiplies two unsigned integer words ai, bj and
adds the result to the 64-bit value stored into the registers rLO and rHI.

– UMAAL rLO, rHI, ai, bj multiplies two unsigned integer words ai, bj , adds
the 32-bit rLO value to the result of the multiplication, adds the 32-bit rHI

value to the result of the addition, and finally stores the 64-bit result back
into the registers rLO and rHI.

Other relevant arithmetic instructions are ADD, SUB, ADC, and SBC, which
are used to add, subtract, add with carry and subtract with carry, respectively.
If these instructions have to update the condition flags in the status register,
then they can be used with the “S” suffix, i.e. ADDS, SUBS, ADCS, and SBCS,
respectively.

3 Field Arithmetic

255-bit integers are represented in little-endian format using radix-232 (full-
radix), i.e. every integer a is stored as a d = d255/32e = 8-dimensional array
of 32-bit words (a0, . . . , ad−1) = (a mod 232, . . . , a/232(d−1) mod 232) and repre-

sented as a =
∑d−1

i=0 ai2
32i, ai ∈ Z232 .

Modular reduction is performed in two steps, as suggested in [CP06, HMH+15]:
(1) a fast reduction modulo 2256−38 is performed during the ladder steps to align
the words to the boundaries of registers and fit integers into 32-byte. (2) A final
reduction modulo 2255−19 takes place at the end of the scalar multiplication to
reduce the final result back to prime field F2255−19.
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Fig. 1. 8× 8-byte Multiplication.

Listing 1 8× 8-byte Multiplication.

Input: a = (a0, a1) and b = (b0, b1).
Output: c = (c0, c1, c2, c3) s.t. c = ab.

1: UMULL c0, c1, a0, b0 { (c1, c0) = a0b0 }
2: UMULL c2, c3, a0, b1 { (c3, c2) = a0b1 }
3: UMULL b1, a0, a1, b1 { (a0, b1) = a1b1 }
4: UMULL b0, a1, a1, b0 { (a1, b0) = a1b0 }
5: ADDS c1, c2 { (c1, γ) = c1 + c2 }
6: ADCS c2, c3, b1 { (c2, γ) = c3 + b1 + γ }
7: ADCS c3, a0, 0 { c3 = a0 + γ }
8: ADDS c1, b0 { (c1, γ) = c1 + b0 }
9: ADCS c2, a1 { (c2, γ) = c2 + a1 + γ }

10: ADCS c3, c3, 0 { c3 = c3 + γ }

Multiplication 32 × 32-byte multiplications are implemented using a 2-level
subtractive Karatsuba, hence requiring nine 8×8-byte multiplications. On ARM
Cortex-M4 processors these can be implemented using only 10 instructions, as
shown in Listing 1: first, the four partial products (a0b0, a0b1, a1b1, a1b0) are
computed with four UMULL instructions. Then, they are added up using only six
ADDS/ADCS instructions, as shown in Figure 1. In practice, Listing 1 corresponds
to a typical scanning approach with quadratic complexity tailored down for ARM
Cortex-M4 processors. However, it does not correspond to the straightforward
implementation of neither operand scanning or product scanning techniques,
as the partial products are all computed first and then accumulated following
an ideal circular route over the 2 × 2 lattice of partial products. This way of
accumulating the partial products allows to quickly ripple the carry values γ
over all limbs and minimize the number of additions with carry, thus saving a
few instructions and clock cycles.

Squaring Similar to multiplications, 32-byte squaring operations are imple-
mented using a 2-level subtractive Karatsuba, hence requiring nine 8-byte squar-
ing operations. Since a0b1 = a1b0 in case of squaring, one partial product can be
skipped and 8-byte squarings can be implemented on ARM Cortex-M4 proces-
sors using only 9 instructions, as shown in Listing 2: first, the partial products
a20 and a21 are computed. Then, the partial product a0a1 is computed and added
twice to (c1, c2) while rippling the carry through c3, as shown in Figure 2.
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Fig. 2. 8-byte Squaring.

Listing 2 8-byte Squaring.

Input: a = (a0, a1).
Output: c = (c0, c1, c2, c3) s.t. c = a2.

1:
2: UMULL c0, c1, a0, a0 { (c1, c0) = a20 }
3: UMULL c2, c3, a1, a1 { (c3, c2) = a21 }
4: UMULL a0, a1, a0, a1 { (a1, a0) = a0a1 }
5: ADDS c1, c1, a0 { (c1, γ) = c1 + a0 }
6: ADCS c2, c2, a1 { (c2, γ) = c2 + a1 + γ }
7: ADCS c3, c3, 0 { c3 = c3 + γ }
8: ADDS c1, c1, a2 { (c1, γ) = c1 + a2 }
9: ADCS c2, c2, a1 { (c2, γ) = c2 + a1 + γ }

10: ADCS c3, c3, 0 { c3 = c3 + γ }

Multiplication by 121666 Since the constant 121666 fits into a 32-bit word
(0x0001DB42), then the UMAAL instruction can be used to compute the multipli-
cations by 121666 with 9 instructions using the following trick: first, one UMULL

by 121666 is performed, then the constant is decreased by one and seven UMAAL

instructions with 121665 are performed. The UMAAL instruction adds a1 to the
multiplication result 121665a1, which yields the same result as 121666a1. The
final result is stored in (a0, . . . , a7, rHI) which can be then directly reduced. In
this way, the accumulator does not need to be shifted, hence leading to a very
fast and compact implementation (cf. Listing 3).

Listing 3 8-byte Multiplication by 121666.

Input: a = (ai)0≤i≤7.
Output: a = (a0, . . . , a7, rHI) = 121666a.

1: UMULL a0, rHI, a0, c { (rHI, a0) = 121666a0 }
2: UMAAL a1, rHI, a1, c { (rHI, a1) = 121665a1 + a1 + rHI }
3: UMAAL a2, rHI, a2, c { (rHI, a2) = 121665a2 + a2 + rHI }
4: UMAAL a3, rHI, a3, c { (rHI, a3) = 121665a3 + a3 + rHI }
5: UMAAL a4, rHI, a4, c { (rHI, a4) = 121665a4 + a4 + rHI }
6: UMAAL a5, rHI, a5, c { (rHI, a5) = 121665a5 + a5 + rHI }
7: UMAAL a6, rHI, a6, c { (rHI, a6) = 121665a6 + a6 + rHI }
8: UMAAL a7, rHI, a7, c { (rHI, a7) = 121665a7 + a7 + rHI }
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Table 1. Implementation Results.

Operation Speed [Cycles] Code [Bytes] Stack [Bytes]

Addition 106 138 32

Subtraction 108 148 32

Multiplication by 121666 72 116 24

Multiplication 546 1, 264 148

Squaring 362 882 104

Inversion 96, 337 484 480

[k] ·P (M only) 1, 658, 083 2, 952 740

[k] ·P (M and S) 1, 423, 667 3, 750 740

[k] ·P (M and S + rand.) 1, 563, 582 3, 786 744

4 Implementation Results

The software was cross-compiled using the GNU Compiler Collection for ARM
Embedded Processors version 4.9.3 release 20150529 with the options -O2

-mthumb -mcpu=cortex-m4 and tested on a STM32F411RE ARM Cortex-M4 us-
ing a STM32 Nucleo-64 development board [STM].

The code size was measured summing up the size of the .text, .bss and
.data segments, as obtained from the GNU arm-none-eabi-size. The number
of clock cycles was measured using the internal clock cycle counter (CYCCNT)
of the Data Watchpoint and Trace Unit (DWT), as available on ARM Cortex-
M4 processors, with the aid of the ARM mbed library [ARMa]. Note that the
reported number of clock cycles includes the overheads for calling and returning
from the considered function under test. Finally, the stack usage was estimated
filling the memory with a canary up to 1024 words and then checking how many
words were changed after a call to the considered function under test.

The results are summarized in Table 1, where the performance of Curve25519
scalar multiplication is reported in three versions: (1) without randomization and
using multiplications in place of squaring operations (“M only”), (2) without
randomization and using a dedicated routine for squaring operations (“M and
S”), and (3) with randomization and using a dedicated routine for squarings
(“M and S + rand”). Note that all the reported results are constant-time. Also,
our implementation does not overwrite the input values (k,P) of the scalar
multiplication. In case the input parameters can be overwritten, i.e. Q = [k] ·P
overwrites P, then both speed and code size can be further improved.

Table 2 provides a comparison of our results to existing X25519 implemen-
tations on 8-bit, 16-bit, and 32-bit embedded processors. In particular, our full-
radix X25519 implementation is ≈ 21% faster and ≈ 9% smaller than the corre-
sponding reduced-radix implementation on ARM Cortex M4 processors [dG15].
Apart from the different radix representation, these two implementations mainly
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Table 2. Curve25519 on Embedded Processors.

Platform Multiply Square Curve25519a
[Cycles] [Cycles] [Cycles] [Bytes]

08-bit AVR ATmega [HS13] 6, 868∗ −∗ 22, 791, 580♦ −

08-bit AVR ATmega [NLD15] 7, 555∗ 5, 666∗ 20, 153, 658♦ −

08-bit AVR ATmega [DHH+15] 4, 961∗ 3, 324∗ 13, 900, 397♦ 17, 710

16-bit MSP430† [HMH+15] 3, 606Λ −∗ 9, 139, 739♦ 11, 778

16-bit MSP430† [DHH+15] 3, 193∗ 2, 426∗ 7, 933, 296♦ 13, 112

16-bit MSP430‡ [HMH+15] 2, 488∗ −∗ 6, 513, 011♦ 8, 956

16-bit MSP430‡ [DHH+15] 2, 079∗ 1, 563∗ 5, 301, 792♦ 10, 088

32-bit ARM Cortex-M0‡ [DHH+15] 1, 294∗ 857∗ 3, 589, 850♦ 7, 900

32-bit ARM Cortex-M4‡ [dG15] 631∗ 563∗ 1, 816, 351♦ 4, 140

32-bit ARM Cortex-M4‡ (This Work) 546∗ −∗ 1,658,083♦ 2,952

32-bit ARM Cortex-M4‡ (This Work) 546∗ 362∗ 1,423,667♦ 3,750

32-bit ARM Cortex-M4‡ (This Work) 546∗ 362∗ 1,563,582♦ 3,786

∗ Including (fast) reduction.
† With 16× 16-bit hardware multiplier.
‡ With 32× 32-bit hardware multiplier.
♦ Using randomized projective coordinates.

differ in the squaring to multiplication ratio. The former has a ratio of ≈ 0.66,
while the latter of ≈ 0.89, thus clarifying the obtained speed results. Note that
the authors became aware of the independent results of Wouter de Groot’s mas-
ter thesis [dG15] only after finishing their work.
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